89 research outputs found

    Quantum authentication and encryption with key recycling

    Get PDF
    We propose an information-theoretically secure encryption scheme for classical messages with quantum ciphertexts that offers detection of eavesdropping attacks, and re-usability of the key in case no eavesdropping took place: the entire key can be securely re-used for encrypting new messages as long as no attack is detected. This is known to be impossible for fully classical schemes, where there is no way to detect plain eavesdropping attacks. This particular application of quantum techniques to cryptography was originally proposed by Bennett, Brassard and Breidbart in 1982, even before proposing quantum-key-distribution, and a simple candidate scheme was suggested but no rigorous security analysis was given. The idea was picked up again in 2005, when Damgård, Pedersen and Salvail suggested a new scheme for the same task, but now with a rigorous security analysis. However, their scheme is much more demanding in terms of quantum capabilities: it requires the users to have a quantum computer. In contrast, and like the original scheme by Bennett et al., our new scheme requires from the honest users merely to prepare and measure single BB84 qubits. As such, we not only show the first provably-secure scheme that is within reach of current technology, but we also confirm Bennett et al.’s original intuition that a scheme in the spirit of their original construction is indeed secure

    On the power of two-party quantum cryptography

    Get PDF
    We study quantum protocols among two distrustful parties. Under the sole assumption of correctness - guaranteeing that honest players obtain their correct outcomes - we show that every protocol implementing a non-trivial primitive necessarily leaks information to a dishonest player. This extends known impossibility results to all non-trivial primitives. We provide a framework for quantifying this leakage and argue that leakage is a good measure for the privacy provided to the players by a given protocol. Our framework also covers the case where the two players are helped by a trusted third party. We show that despite the help of a trusted third party, the players cannot amplify the cryptographic power of any primitive. All our results hold even against quantum honest-but-curious adversaries who honestly follow the protocol but purify their actions and apply a different measurement at the end of the protocol. As concrete examples, we establish lower bounds on the leakage of standard universal two-party primitives such as oblivious transfer

    Complete Insecurity of Quantum Protocols for Classical Two-Party Computation

    Get PDF
    A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other's input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing, and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.Comment: v2: 6 pages, 1 figure, text identical to PRL-version (but reasonably formatted

    Secure two-party quantum evaluation of unitaries against specious adversaries

    Full text link
    We describe how any two-party quantum computation, specified by a unitary which simultaneously acts on the registers of both parties, can be privately implemented against a quantum version of classical semi-honest adversaries that we call specious. Our construction requires two ideal functionalities to garantee privacy: a private SWAP between registers held by the two parties and a classical private AND-box equivalent to oblivious transfer. If the unitary to be evaluated is in the Clifford group then only one call to SWAP is required for privacy. On the other hand, any unitary not in the Clifford requires one call to an AND-box per R-gate in the circuit. Since SWAP is itself in the Clifford group, this functionality is universal for the private evaluation of any unitary in that group. SWAP can be built from a classical bit commitment scheme or an AND-box but an AND-box cannot be constructed from SWAP. It follows that unitaries in the Clifford group are to some extent the easy ones. We also show that SWAP cannot be implemented privately in the bare model

    Cryptography in the Bounded Quantum-Storage Model

    Get PDF
    We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary’s quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory, whereas an adversarial player needs quantum memory of size at least n/2 in order to break the protocol, where n is the number of qubits transmitted. This is in sharp contrast to the classical bounded-memory model, where we can only tolerate adversaries with memory of size quadratic in honest players’ memory size. Our protocols are efficient and noninteractive and can be implemented using today’s technology. On the technical side, a new entropic uncertainty relation involving min-entropy is established

    Improving the security of quantum protocols via commit-and-open

    Get PDF
    We consider two-party quantum protocols starting with a transmission of some random BB84 qubits followed by classical messages. We show a general compiler improving the security of such protocols: if the original protocol is secure against an almost honest adversary, then the compiled protocol is secure against an arbitrary computationally bounded (quantum) adversary. The compilation preserves the number of qubits sent and the number of rounds up to a constant factor. The compiler also preserves security in the bounded-quantum-storage model (BQSM), so if the original protocol was BQSM-secure, the compiled protocol can only be broken by an adversary who has large quantum memory and large computing power. This is in contrast to known BQSM-secure protocols, where security breaks down completely if the adversary has larger quantum memory than expected. We show how our technique can be applied to quantum identification and oblivious transfer protocols

    Experimental quantum tossing of a single coin

    Full text link
    The cryptographic protocol of coin tossing consists of two parties, Alice and Bob, that do not trust each other, but want to generate a random bit. If the parties use a classical communication channel and have unlimited computational resources, one of them can always cheat perfectly. Here we analyze in detail how the performance of a quantum coin tossing experiment should be compared to classical protocols, taking into account the inevitable experimental imperfections. We then report an all-optical fiber experiment in which a single coin is tossed whose randomness is higher than achievable by any classical protocol and present some easily realisable cheating strategies by Alice and Bob.Comment: 13 page

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8
    • …
    corecore